
CVS Tutorial

1

This �le is designed to give you a bird's eye view of the workings of the Concurrent Versions

System (CVS). It is based (loosely) around CVS version 1.3. It is recommended that you make

sure the CVS your are working with this version before continuing.

Please send me comments/additions/questions about this tutorial. It needs more input from

folks. Novices can help by pointing out confusing sections or by sending me questions not covered

by this �le. Masters can help by �rst verifying that the information here is sane, by sending their

own tutorials, and by generally providing intelligent feedback.

Thanks, Gray Watson <gray.watson@antaire.com>

0.1 Basic description of the CVS system.

CVS is a system that lets groups of people work simultaneously on groups of �les (for instance

program sources).

It works by holding a central `repository' of the most recent version of the �les. You may at any

time create a personal copy of these �les by `checking out' the �les from the repository into one

of your directories. If at a later date newer versions of the �les are put in the repository, you can

`update' your copy.

You may edit your copy of the �les freely. If new versions of the �les have been put in the

repository in the meantime, doing an update merges the changes in the central copy into your copy.

When you are satis�ed with the changes you have made in your copy of the �les, you can

`commit' them into the central repository.

When you are �nally done with your personal copy of the �les, you can `release' them and then

remove them.

0.2 Some basic words and descriptions.

Repository

The directory storing the master copies of the �les. The main or master repository is

a tree of directories.

2

Module A speci�c directory (or mini-tree of directories) in the main repository. Modules are

de�ned in the CVS modules �le.

RCS Revision Control System. A lower-level set of utilities on which CVS is layered.

Check out To make a copy of a �le from its repository that can be worked on or examined.

Revision A numerical or alpha-numerical tag identifying the version of a �le.

0.3 Look at the CVS basic command set.

Most of the below commands should be executing while in the directory you checked out. If

you did a cvs checkout malloc then you should be in the malloc sub-directory to execute most of

these commands. cvs release is di�erent and must be executed from the directory above.

cvs checkout (or cvs co)

To make a local copy of a module's �les from the repository execute cvs checkout

module where module is an entry in your modules �le (see below). This will create a

sub-directory module and check-out the �les from the repository into the sub-directory

for you to work on.

cvs update

To update your copy of a module with any changes from the central repository, execute

cvs update. This will tell you which �les have been updated (their names are displayed

with a U before them), and which have been modi�ed by you and not yet committed

(preceded by an M).

It can be that when you do an update, the changes in the central copy clash with

changes you have made in your own copy. You will be warned of any �les that contain

clashes by a preceding C. Inside the �les the clashes will be marked in the �le surrounded

by lines of the form <<<< and >>>>. You have to resolve the clashes in your copy by

hand. After an update where there have been clashes, your original version of the �le

is saved as `.#file.version'.

If you feel you have messed up a �le and wish to have CVS forget about your changes

and go back to the version from the repository, delete the �le and do an cvs update.

CVS will announce that the �le has been \lost" and will give you a fresh copy.

cvs commit

When you think your �les are ready to be merged back into the repository for the rest

of your developers to see, execute cvs commit. You will be put in an editor to make

a message that describes the changes that you have made (for future reference). Your

changes will then be added to the central copy.

When you do a commit, if you haven't updated to the most recent version of the �les,

3

CVS tells you this; then you have to �rst update, resolve any possible clashes, and then

redo the commit.

cvs add and cvs remove

It can be that the changes you want to make involve a completely new �le, or removing

an existing one. The commands to use here are:

cvs add `filename'

cvs remove `filename'

You still have to do a commit after these commands to make the additions and removes

actually take a�ect. You may make any number of new �les in your copy of the

repository, but they will not be committed to the central copy unless you do a cvs

add.

CVS remove does not actually remove the �les from the repository. It only removes

them from the \current list" and puts the �les in the CVS Attic. When another person

checks out the module in the future they will not get the �les that were removed. But

if you ask for older versions that had the �le before it was removed, the �le will be

checked out of the Attic.

cvs release

When you are done with your local copy of the �les for the time being and want to

remove your local copy use cvs release module. This must be done in the directory

above the module sub-directory you which to release. It safely cancels the e�ects of

cvs checkout. Usually you should do a commit �rst.

If you wish to have CVS also remove the module sub-directory and your local copy of

the �les then your cvs release -d module.

NOTE: Take your time here. CVS will inform you of �les that may have changed or

it does not know about (watch for the ? lines) and then with ask you to con�rm this

action. Make sure you want to do this.

cvs log To see the commit messages for �les, and who made them, use:

cvs log [`filename(s)']

cvs diff To see the di�erences between your version of the �les and the version in the repository

do:

cvs diff [`filename(s)']

cvs tag

One of the exciting features of CVS is its ability to mark all the �les in a module at

once with a symbolic name. You can say `this copy of my �les is version 3'. And then

later say `this �le I am working on looked better in version 3 so check out the copy that

I marked as version 3.'

Use cvs tag to tag the version of the �les that you have checked out. You can then at

a later date retrieve this version of the �les with the tag.

4

cvs tag tag-name [filenames]

Later you can do:

cvs co -r tag-name module

cvs rtag Like tag, rtag marks the current versions of �les but it does not work on your local

copies but on the �les in the repository. To tag all my libraries with a version name I

can do:

cvs rtag LIBRARY_2_0 lib

This will recursively go through all the repository directories below lib and add the

LIBRARY_2_0 tag to each �le. This is one of the most useful features of CVS (IMHO).

Use this feature if you about to release a copy of the �les to the outside world or just

want to mark a point in the developmental progression of the �les.

cvs history

To �nd out information about your CVS repositories use the cvs history command.

By default history will show you all the entries that correspond to you. Use the -a

option to show information about everyone.

cvs history -a -o shows you (a)ll the checked (o)ut modules

cvs history -a -T reports (a)ll the r(T)ags for the modules

cvs history -a -e reports (a)ll the information about (e)verything

0.4 The things to do before using CVS.

Make sure all your developers have the CVSROOT environment variable set to the directory that

is to hold your main �le repository (mine is set to `/usr/src/master'). The following commands

can be placed in a `.cshrc' or `.profile' �les.

setenv CVSROOT /src/master

for tcsh/csh users, and

CVSROOT=/src/master; export CVSROOT

for bash/sh users.

Run the cvsinit script that comes with CVS to initialize the repository tree.

Encourage all your developers to make a working directory where they will be working on the

�les (mine is `~/src/work').

Edit the modules �le to add the localmodules. You can either do this by cd'ing to `${CVSROOT}/CVSROOT'

5

and saying co -l modules and then editing `modules', or, better, cd to your working directory and

do a cvs co modules (co is an alias for checkout).

Next add your modules to the �le. I added the following lines to my �le:

libraries

lib antaire/lib

db antaire/lib/db

dt antaire/lib/dt

inc antaire/lib/inc

lwp antaire/lib/lwp

malloc antaire/lib/malloc

inter antaire/lib/inter

prt antaire/lib/inter/prt

The above entries now allow me to cvs co malloc to create a directory `malloc' where I am

and check out the �les from `${CVSROOT}/antaire/lib/malloc' into that directory.

cvs co lib will check out all my libraries and make a whole tree under lib: `lib/db/*',

`lib/dt/*', `lib/inc/*', etc.

Next, create a `cvsignore' �le in `${CVSROOT}/CVSROOT'. This �le contains the local �les that

you want CVS to ignore. If you have standard temporary �les, or log �les, etc. that you would

never want CVS to notice then you need to create this �le.

The �rst time you should go into the CVSROOT directory, edit the �le and ci -u cvsignore

to check it in.

You should apply the mkmodules.patch then recompile and install the mkmodules �le See hun-

definedi [Mkmodules Patch], page hundefinedi. Finally add the following line to your modules �le

(see above) so you can use CVS to edit the �le in the future.

cvsignore -i mkmodules CVSROOT cvsignore

I have in my �le:

*.t

*.zip

MAKE.LOG

Makefile.dep

6

a.out

logfile

: : :

CVS ignores a number of common temp �les (`*~', `#*', `RCS', `SCCS', etc..) automatically. (see

the manual entry for cvs(5)).

warning : CVS is good at this. Any �les in the cvsignore �le will be ignored completely without

a single warning.

Now, add your �les into their respective module directories:

cd into your current directory which holds the �les.

Build clean/clobber and make sure that only the �les you want to be checked into the repository

are in the current directory. Execute:

cvs import -m 'comment' repository vendortag releasetag

The comment is for you to document the module

The repository should be a path under ${CVSROOT}. My malloc library is checked into

`antaire/lib/malloc'.

vendortag is a release tag that the vendor assigned to the �les. If you are the vendor then put

whatever you want there: (PRT_INITIAL, MALLOC_1_01, etc);

Releasetag is your local tag for this copy of the �les. (PRT_1, malloc_1_01, etc);

0.5 A \real-life" example of the usage of CVS.

cd to your work directory:

I do cd ~/src/work

Execute cvs co module where module is an entry from the modules �le (see above):

7

Say cvs co malloc to get my malloc library. It will create the sub-directory `malloc' and will

load the �les into this new directory.

Edit the �les to your heart's content.

If you add any new �les to the directory that you want the repository to know about you need

to do a

cvs add file1 [file2 : : :]

If you remove any �les you need to do a

cvs remove file1 [file2 : : :]

If you rename you need to do a combination remove and then add.

Execute cvs update to pull in the changes from the repository that others made. It will resolve

conicts semi-automatically. It will tell you about the �les it updates. U means updated, C means

there was a conict that it could not automatically resolve. You need to edit the �le by hand, look

for the <<<<< and >>>>> lines and �gure out how the �le should look.

Execute cvs commit inside the directory you checked out to papply your changes to the repos-

itory so others can use them (if they have the module in question checked out already, they need

to do a cvs update to see your changes).

When you are done with the �les (for the time being) you cd .. to the above directory and do

a cvs release [-d] module-name which will check-in the �les. The optional -d will remove the

directory and �les from your work directory when it is done releasing them.

The release command will inform you if your made modi�cations to the �les and if there are

�les it doesn't know about that you may have forgotten to add. watch for ? file lines printed.

You may have to stop the release and commit or cvs add/remove the �les.

WARNING: release -d is unrecoverable. Make sure that you take your time here. Fortunately,

cvs release asks whether you really want to do this before doing anything.

8

0.6 How to get more information about CVS commands.

All CVS commands take a -H option to give help:

cvs -H shows you the options and commands in cvs.

cvs history -H

shows you the options for CVS history.

All the CVS commands mentioned also accept a ag -n, that doesn't do the action, but lets

you see what would happen. For instance, you can use cvs -n update to see which �les would be

updated.

To get more information, see the manual page man cvs for full (and much more complicated)

details.

A basic knowledge of the Revision Control System (RCS) on which CVS is layered may also be

of some assistance. see man co or man ci for more details.

0.7 What's the di�erence between the two.

0.7.1 Modules as Collections of �les

One of the strong points about CVS is that it not only lets you retrieve old versions of speci�c

�les, you can collect �les (or directories of �les) into \modules" and operate on an entire module at

once. The RCS history �les of all modules are kept at a central place in the �le system hierarchy.

When someone wants to work an a certain module he just types cvs checkout malloc which causes

the directory `malloc' to be created and populated with the �les that make up the malloc project.

With cvs tag malloc-1.0 you can give the symbolic tag malloc-1.0 to all the versions of the

�le in the malloc module. Later on, you can do cvs checkout -r malloc-1.0 malloc to retrieve

the �les that make up the 1.0 release of malloc. You can even do things like cvs diff -c -r

malloc-1.0 -r malloc-1.5 to get a context di� of all �les that have changed between release 1.0

and release 1.5!

9

0.7.2 No locking

If you work in a group of programmers you have probably often wanted to edit the function

realloc() in `alloc.c', but Joe had locked `alloc.c' because he is editing free().

CVS does not lock �les. Instead, both you and Joe can edit `alloc.c'. The �rst one to check

in it won't realize that the other have been editing it. (So if you are quicker than Joe you wont

have any trouble at all). Poor Joe just have to do cvs update alloc.c to merge in your changes

in his copy of the �le. As long as you changing di�erent sections of the �le the merge is totally

automatic. If you change the same lines you will have to resolve the conicts manually.

0.7.3 Friendlier user interface

If you don't remember the syntax of cvs diff you just type cvs -H diff and you will get a

short description of all the ags. Just cvs -H lists all the sub-commands. I �nd the commands less

cryptic than the RCS equivalents. Compare cvs checkout module (which can be abbreviated to

cvs co module) with co -l RCS/*,v (or whatever it is you are supposed to say { it's a year since

I used RCS seriously).

0.8 Some questions about CVS and some (often weak) answers.

When I say cvs checkout module/sub-directory and then cvs release module/sub-directory

it says unknown module name. why?

� because module/sub-directory is not a module in the modules �le.

� cvs release module should work with this.

Because of incorrect releasing of directories, I noticed that cvs history reports that modules

are still checked out. how do I correct this?

� by editing $CVSROOT/CVSROOT/history VERY carefully

� I do not know the correct way of doing this but the O lines are for checking Out modules.

Removing the last O line that corresponds to the module in question may work.

If I just made a typo and started to check out a tree I did not want to. Can I hit control-c?

What are the rami�cations?

10

� probably some �les are checked out while others are not

� it is not a good idea to do this. Unless you are pushing the limit on your disk space or

something, just wait till it is done and then release the directory.

� don't know exactly

I screw up and removed the tree that I was about to start working on. How do I tell CVS that

I want to release it if I don't have it anymore?

� maybe you can't

� you need to edit $CVSROOT/CVSROOT/history very carefully to �x this problem (see above)

�

What is the proper way to con�gure CVS for multi-user operations? What sort of �le directory

modes are appropriate aside from 770 modes everywhere. Any setgid support?

� �rst, CVS should NOT be installed as setuid or setgid!!! It is not designed to support these

functions and will thus be a security problem. (the same applied to RCS)

� set all your $CVSROOT repository directories to a common group (src would make sense).

Setgid on the directories would also be good if your system supports 'chmod g+s dir'

� normal 770 or ug+rwx directory modes in your repository directories should work. Have your

system administrator execute something to the a�ect of:

find $CVSROOT -type d -exec chgrp src {} \;

find $CVSROOT -type d -exec chmod 770 {} \;

and (if available)

find $CVSROOT -type d -exec chmod g+s {} \;

� your default umask should be set to 027

� make sure all your developers are in the src group.

I am constantly running into di�erent library modules to �x problems or add need features.

This may not be a good practice but how does CVS �t in this scenario. Should I checkout the

modules I need and once and a while commit them?

� yes. as long as you realize the commit will make your changes seen by everyone. make sure to

run the appropriate tests on them, etc.

I have 4 releases of my debug malloc subsystem. They are 1.01, 1.02, 1.03, 1.05. Should I:

11

cvs import -b 1.1.1 -m 'Malloc 1.01' MALLOC_1_01 malloc_1_01

cvs import -b 1.1.2 -m 'Malloc 1.02' MALLOC_1_02 malloc_1_02

cvs import -b 1.1.3 -m 'Malloc 1.03' MALLOC_1_03 malloc_1_03

cvs import -b 1.1.5 -m 'Malloc 1.05' MALLOC_1_05 malloc_1_05

for each set of �les? Are these sane incantations?

� not really. cvs import may not be the right may to do this. you should cvs import the �rst

set of �les then for each release you should:

� copy in the new version

� cvs add/remove the �les that have been added/deleted

� cvs commit the new version

� cvs tag the �les with the appropriate release-tag

� repeat

When I use the above multiple-import method and I say cvs checkout malloc I do not just

get the �les that correspond to version 1.05 . I get all of the �les. I have to say cvs checkout -r

malloc_1_05 malloc to do this. Is this correct or do I need to cvs remove the �les that have been

removed between the di�erent versions?

� yes, you need to cvs add/remove �les to have the repository know about them. the �les that

are removed are placed in the attic so that old-revisions can �nd them.

Is there a CVS feature to tell me what �les have changed, what are new what have been removed

from the current directory?

� when you do a cvs update, CVS will inform you of the changed/modi�ed �les with a M,

updated �les with a U, and removed �les with an R. It will show you �les that might need to

be added with a ?.

� in the contrib directory under the CVS release there exists a cvscheck script which gives you

some of this functionality.

If I had a �le at one point, but I did a cvs remove on it, and now I need to recreate it. How

can I re-add it? It complains that it is in the Attic. Can it live there for old versions but also exist

the in normal repository for newer versions?

� No it cannot live in both the Attic and the repository.

� I believe you can move the �le out of the Attic directory by hand. this seems to work �ne.

12

� WARNING: playing with the repository �les is a potentially dangerous situation. You may

wish to let your system administrator take care of this. If you are doing it yourself, make sure

to use cp -i and mv -i or just watch your back and take your time.

0.9 Some questions for people more experiences with CVS.

CVS handled binary �les but it seems to corrupt them once and while?

� CVS uses RCS and RCS looks for certain sequences of characters like \$Id\$ and replaces them

with version information. So what if a keyword sequence just happens to occur in a binary �le

since any sequence of ASCII characters is possible? CVS will update any keyword sequences

it �nds and will corrupt any binary �les in which these sequences occur.

So keyword substitution must be prevented in binary �les by added info to the rcs �les for

each binary �le. I also prevent it in any �les in which I don't plan to insert rcs keywords just

to reduce checkout time. This can be done in the repository using the rcs command:

rcs -ko <filenames,v>

� It might also be because someone is using RCS version 4.x which can't handle binary �les. It

will corrupt the history �les! For this reason it may be necessary to install CVS with a full

path to the RCS and di� programs so that it doesn't depend on $PATH which of them are

run.

How can I use the \$Log\$ keyword with CVS with Objective-C and // comments?

� RCS (and therefore CVS) doesn't know about Objective-C "//" comments by default. I must

inform RCS so that when it expands its \$Log\$ keyword, it will prepend the proper comment

characters.

rcs -c"// " <filenames,v>

0.10 List of some of the folks that have provided feedback.

� Scott Michel <scottm@intime.intime.COM>

� Robert Lupton the Good <rhl@astro.Princeton.EDU> (texinfo hacker)

� Steven Pemberton, CWI, Amsterdam <Steven.Pemberton@cwi.nl>

� Per Cederqvist <ceder@lysator.liu.se>

� Art Isbell <isbell@cats.UCSC.EDU>

13

� Paul Eggert <eggert@twinsun.com> (RCS god)

� Brian Berliner <Brian.Berliner@Central.Sun.COM> (CVS god)

0.11 A patch for mkmodules to make it know about cvsignore

*** mkmodules.c~ Tue Mar 31 16:56:20 1992

--- mkmodules.c Sat Sep 19 14:30:19 1992

*** 183,188 ****

--- 183,202 ----

"a %s file can be used to configure 'cvs commit' checking",

CVSROOTADM_COMMITINFO);

(void) unlink_file (temp);

+

+ /*

+ * Now, check out the "cvsignore" file, so that it is always up-to-date

+ * in the CVSROOT directory.

+ */

+ make_tempfile (temp);

+ if (checkout_file (CVSROOTADM_IGNORE, temp) == 0)

+ rename_rcsfile (temp, CVSROOTADM_IGNORE);

+ else

+ error (0, 0,

+ "a %s file can be used to list files that cvs should ignore",

+ CVSROOTADM_IGNORE);

+ (void) unlink_file (temp);

+

return (0);

}

Table of Contents i

Table of Contents

0.1 Basic description of the CVS system. : 1

0.2 Some basic words and descriptions. : 1

0.3 Look at the CVS basic command set. :2

0.4 The things to do before using CVS. :4

0.5 A \real-life" example of the usage of CVS. : 6

0.6 How to get more information about CVS commands. : : : : : : : : : : : : : : : : :8

0.7 What's the di�erence between the two. : 8

0.7.1 Modules as Collections of �les: :8

0.7.2 No locking : 9

0.7.3 Friendlier user interface : 9

0.8 Some questions about CVS and some (often weak) answers.: : : : : : : : : :9

0.9 Some questions for people more experiences with CVS. : : : : : : : : : : : : : 12

0.10 List of some of the folks that have provided feedback. : : : : : : : : : : : : : :12

0.11 A patch for mkmodules to make it know about cvsignore : : : : : : : : : : 13

